MINIMIZATION OF ATMOSPHERIC EMISSIONS IN THE HYDROCARBON PROCESSING INDUSTRY WITH

HIGH EFFICIENCY PLATE-AND-SHELL HEAT EXCHANGERS

Texas Technology Showcase 2003

Outline

- Atmospheric Emissions from Use of Energy in the HPI
- Heat Integration
- Thermal Pinch
- PSHE as Best Equipment to Minimize the Pinch
- Case Story: Diesel Hydrotreater
- Case Story: Catalytic Reforming
- Case Story: Pygas Hydrotreater
- Summary

Slides

- 3-4
- **5**
- 6
- **7-11**
- 12-13
- 14
- **15-16**
- 17

Atmospheric Emissions from Use of Energy in the HPI

- Fired Heaters are Typically the Largest Consumers of Energy and the Largest Contributors to Atmospheric Emissions by Oil Refineries.
- Example of Utility Consumption at a Particular Diesel HDS Unit

```
Fired Heater 19 ¢ / bbl 6 lb. GHG / bbl
Compressor 6 ¢ / bbl (*)
Product Cooler 1 ¢ / bbl (*)
```

- Energy Consumption is Usually the Second or Third Largest Cost Center of a Refinery
 - First = Crude Oil Supply
 - Next is either Personnel or Energy

Atmospheric Emissions from Use of Energy in the HPI

Conclusion:

- Minimizing the Use of Fired Heaters is both:
 - Good for the Refinery's Bottom Line Economics
 - An Excellent Method to Reduce Atmospheric Emissions.
- This Paper Suggests a Method and a Tool to REDUCE THE NEED FOR MANY FIRED HEATERS IN A REFINERY

Thermal Pinch Inside the HE

Barriers to Reducing the Pinch:

- The LMTD Diminishes Rapidly with the Pinch, and the Required Heat Transfer Surface Area Increases just as Fast
- The Tube Length Equivalent Increases Rapidly
- Complete Vaporization of the Feed is Needed

Heat Transfer
Through Very Large
Corrugated Plates:

- Huge Surface Area in a Compact Design
- Very Long Tube Length Equivalent
- Corrugations Give High Turbulence to Help Complete Vaporization

- Corrugated
 Surface Works
 as a Static Mixer
- Maintains high Turbulence and Promotes Twophase Flow Distribution
- Allows Easy Superheating

- Liquid Feed
 Injectors Allow
 Very Good Control of Liquid Vapor
 Feed Distribution
- Allows Better Heat Transfer Inside the Plate Bundle

Plate-and-Shell HE as Best Equipment to Achieve Minimum Pinch

PACKINOX

Case Story: Diesel Hydrotreater

Two 65.000 bpd Units at Formosa Petrochemical

- Eliminated:
 - 75% of Heater Duty
 - 40% of Compressor HP
 - 40% of Cooler Duty

50.000 tons 602 Equiv /

- On line Since 12/2000
- Savings per Unit:
 - CAPEX > \$5 Million
 - OPEX > \$3 Million / yr

Case Story: Diesel Hydrotreater

Two 65.000 bpd Units at Formosa Petrochemical

- Same Unit based on S&T:
 - Heater: 78 MM BTU/hr v. 17 MM BTU/hr
 - Compressor: 5000 hp v.2950 hp
 - Cooler: 133 MM BTU/hrv. 78 MM BTU/hr

Case Story: Catalytic Reforming

More than 50 Units Retrofitted Around the World

- Two Reduction Samples in North America:
 - 59.000 tons CO2 Equiv./ yr on a 40.000 bpdReformer
 - 16.500 tons / yr on a
 26.000 bpd Reformer

Case Story: Pygas Hydrotreater (Mitsui, Japan)

- Unit with S&T before Revamp with PSHE
 - Heater 28MM BTU/hr
- Operation Restricted by Limits on Air Pollution

Case Story: Pygas Hydrotreater (Mitsui, Japan)

• Eliminated:

100% of Heater Duty after Warm-Up

- On line since 1995
- Allows to
 Operate during
 Air Emissions
 Restriction

Summary

High Efficiency
Shell & Plate = Heat Exchangers

Lets Make Themas Green As We Can !

